Dictionary Learning for MRI denoising and Accelerated MRI Reconstruction

Bachelor’s Thesis

Figure 1: The atoms of a 49×49 dictionary are shown as 7×7 patches. Taken from [1].

Objective:
The aim of dictionary learning is to find a compact, sparse representation of basic elements (dictionaries) to represent the given input data. In this thesis, you will develop a dictionary learning method of the form

$$
\frac{1}{2} \left\| A \sum_{i=1}^{N} c_i * k_i - f \right\|_2^2 + \lambda \sum_{i=1}^{N} \| c_i \|_1
$$

where f defines the input data, A is the forward operator implemented for a specific task, c_i are sparse representations of the input image and k_i are convolution kernels (dictionary elements). The goal of this thesis is to apply this method to MRI denoising and accelerated MRI reconstruction.

Qualifications:
- Student of Biomedical Engineering, Information and Computer Engineering, Computer Science, Software Engineering and Management
- Basic knowledge in optimization
- Programming skills in Matlab or Python, optional: C/C++

Contact ICG:
Kerstin Hammernik
hammernik@icg.tugraz.at

Thomas Pock
pock@icg.tugraz.at